Constructed Wetland Systems: Design Approaches

Scott D. Wallace, P.E.
Vice President
North American Wetland Engineering P.A.

University Curriculum Development for Decentralized Wastewater Management
This work was supported by the National Decentralized Water Resources Capacity Development Project (NDWRCDP) with funding provided by the U.S. Environmental Protection Agency through a Cooperative Agreement (EPA No. CR827881-01-0) with Washington University in St. Louis. These materials have not been reviewed by the U.S. Environmental Protection Agency. These materials have been reviewed by representatives of the NDWRCDP. The contents of these materials do not necessarily reflect the views and policies of the NDWRCDP, Washington University, or the U.S. Environmental Protection Agency, nor does the mention of trade names or commercial products constitute their endorsement or recommendation for use.
CIDWT/University Disclaimer

These materials are the collective effort of individuals from academic, regulatory, and private sectors of the onsite/decentralized wastewater industry. These materials have been peer-reviewed and represent the current state of knowledge/science in this field. They were developed through a series of writing and review meetings with the goal of formulating a consensus on the materials presented. These materials do not necessarily reflect the views and policies of University of Arkansas, and/or the Consortium of Institutes for Decentralized Wastewater Treatment (CIDWT). The mention of trade names or commercial products does not constitute an endorsement or recommendation for use from these individuals or entities, nor does it constitute criticism for similar ones not mentioned.
Citation

Types of Constructed Wetlands

- Free Water Surface (FWS)
- Vegetated Submerged Bed (VSB)
- Vertical Flow (VF)
Free Water Surface Wetland

FWS wetlands have exposed water bodies similar to natural marshes.

Diagram:
- Flow zone
- Emergent vegetation
- Wastewater flow zone
- Rooting media
- Impermeable liner
Free Water Surface Wetland

FWS Wetland operating near Pensacola, Florida

Photo courtesy S. Wallace
Free Water Surface Wetland

- Typical applications are for polishing effluent from a lagoon, activated sludge, or other secondary treatment process.
Vegetated Submerged Bed

- VSB wetlands employ a gravel bed planted with wetland vegetation. The water is kept below the surface of the gravel.
Vegetated Submerged Bed
VSB Wetland operating near Lindstrom, Minnesota

Photo courtesy North American Wetland Engineering
VSB Wetlands

- Most commonly used for onsite wastewater treatment for single-family homes
Vertical Flow Wetlands

- VF wetlands have much higher oxygen transfer rates, allowing for nitrification.
- 2 design types:
 - Recirculating (more common in US)
 - Single-pass (more common in Europe)

Recirculating VF wetland schematic courtesy Reactor Dynamics Inc.
Flow governed by Manning’s Equation

\[v = \frac{1}{n} \left(\frac{2}{d_w^3} \right) \left(\frac{1}{s^2} \right) \]

- \(v \) = liquid flow velocity, ft/s
- \(n \) = Manning’s coefficient s/ft\(^{1/3}\)
- \(d_w \) = depth of water in wetland, ft
- \(s \) = hydraulic gradient or slope of the water surface ft/ft

Crites & Tchobanoglous, 2002
Manning’s coefficient a function of the density of the vegetation and flow depth

\[n = \frac{a}{d_w^{1/2}} \]

\(a = \) resistance factor, \(s \cdot ft^{1/6} \)

<table>
<thead>
<tr>
<th>Resistance Factor, a</th>
<th>Water depth, (d_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.487 for sparse vegetation</td>
<td>>1.3 ft</td>
</tr>
<tr>
<td>1.949 moderately dense vegetation</td>
<td>1.0 ft</td>
</tr>
<tr>
<td>7.795 very dense vegetation</td>
<td><1.0 ft</td>
</tr>
</tbody>
</table>

Crites & Tchobanoglous, 2002
FWS Wetland Processes

- Evapotranspiration in FWS is generally estimated as 80% of pan evaporation

Kadlec & Knight, 1996
Role of Plants in FWS Wetlands

1. Increase sedimentation by reducing water column mixing and resuspension
2. Provide surface area in the water column to increase biofilm biomass and pollutant uptake.
3. Increase the removal of particles from the water column by increasing biofilm and plant surfaces available for particle interception.
4. Provide shade from the plant canopy over the water column to reduce algae growth.
5. Containing and preserving duckweed fronds which greatly limit reaeration and light penetration into the water column.
6. Structurally cause flocculation of smaller colloidal particles into larger, settleable particles.

Sinclair Knight Mertz, 2000; USEPA, 2000
Oxygen is supplied to the FWS wetland through three passive mechanisms:
1. Atmospheric diffusion
2. Phytoplankton (algae) photosynthesis
3. Plant-mediated oxygen transfer

FWS wetlands can also be mechanically aerated to increase oxygen transfer.

Effect of Algae photosynthesis on dissolved oxygen levels

Mara, 1976
Suspended Solids Removal in FWS Wetlands

- Sedimentation (discrete particle settling)
- Aggregation (floculation)
- Interception
- Predation

Removal mechanisms predominate in emergent vegetation zones. About 80% of the influent TSS can be removed within a 2-day retention time (USEPA, 2000)
Solids Generation in FWS wetlands

- Resuspension (carp, nutria, etc)
- Production (algae blooms)

Generation mechanisms predominate in open water zones. Retention time in open water zones should be kept to less than 2-3 days per zone to avoid algae blooms (USEPA, 2000)
Organic Matter Degradation

- In FWS wetlands, there is a large amount of internal carbon cycling.

Kadlec & Knight, 1996
Organic Matter Degradation

- Type of decomposition depends on organic loading and oxygen transfer rate.
- Loadings that exceed oxygen transfer result in anaerobic conditions in the wetland.
 - Odors
 - More favorable mosquito habitat
Organic Loading Rates for FWS Wetlands

<table>
<thead>
<tr>
<th>FWS Type</th>
<th>Typical Loading kg/ha d</th>
<th>Range kg/ha d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-plug flow</td>
<td>60</td>
<td>50-200</td>
</tr>
<tr>
<td>Semi-plug flow with 2:1 recycle and step feed</td>
<td>150</td>
<td>100-200</td>
</tr>
<tr>
<td>Semi-plug flow with step feed, 2:1 recycle and supplemental aeration</td>
<td>200</td>
<td>150-300</td>
</tr>
</tbody>
</table>

Tchobanoglous, 1987
Nitrogen Processes

- **Mineralization**
 - Convert organic nitrogen to ammonia (\(\text{NH}_4^+\))

- **Nitrification**
 \[
 \begin{align*}
 \text{NH}_4^+ + 1.5\text{O}_2 & \xrightarrow{\text{Nitrosomonas}} \text{NO}_2^- + 2\text{H}^+ + \text{H}_2\text{O} \\
 \text{NO}_2^- + 0.5\text{O}_2 & \xrightarrow{\text{Nitrobacter}} \text{NO}_3^- \\
 \text{NH}_4^+ + 2\text{O}_2 & \rightarrow \text{NO}_3^- + 2\text{H}^+ + \text{H}_2\text{O}
 \end{align*}
 \]

- **Denitrification**
 \[
 6\left(\text{CH}_2\text{O}\right) + 4\text{NO}_3^- \rightarrow 6\text{CO}_2 + 2\text{N}_2 + 6\text{H}_2\text{O}
 \]

(Where \(\text{CH}_2\text{O}\) represents biodegradable organic matter.)
Nitrogen Removal in FWS Wetlands

- Nitrification has to occur followed by denitrification
- Only areas in FWS with adequate oxygen transfer for nitrification are open water zones
- Emergent vegetation zones will create a reducing environment suitable for denitrification, assuming adequate organic carbon is available
- Highly temperature-dependent process
FWS Configuration with Open Water Zones

USEPA, 2000
Phosphorus Cycling in FWS Wetlands

- Initially, phosphorus will be removed by adsorption onto sediments
 - Finite amount of adsorption sites
 - Only a temporary removal mechanism
- Phosphorus will be cycled through plant biomass
 - Since wetland can only support a finite standing stock of biomass, removal limited unless wetland is very large

Consequently, phosphorus removal is minimal under normal loading scenarios
Pathogen Reduction in FWS Wetlands

- Pathogens are removed through sedimentation, adsorption, interception and predation.
- However, pathogens are often re-introduced back in the wetland by waterfowl and other wildlife.
- Disinfection of FWS effluent often required to meet surface water discharge standards.
Mosquito Management in FWS Wetlands

- FWS wetlands provide suitable habitat for mosquitoes
- Design goal is to create an environment where larvae do not survive to become adult mosquitoes
- Access of predator organisms (fish, water insects) to larvae is critical to effective management
Mosquito Management in FWS Wetlands

- **Predator access limited by:**
 - Low dissolved oxygen levels
 - Large hummocks of plant detritus (plant bridging)
 - Physical isolation of larvae

- **Improved predator access results from:**
 - Increasing open water areas
 - Avoiding large monotypic stands of emergent vegetation
 - Good design of inlet and outlet structures
Example of wetland modified for improved predator access. Thullen et al. 2002
Mosquito Management in FWS Wetlands

- FWS wetlands cannot be made “mosquito free”
- Realistic goal is to minimize mosquito production to the level found in adjacent natural wetlands
- The potential for mosquito production and impacts to neighbors should be carefully considered when choosing a site
Water Temperature in FWS Wetlands

- Water temperature affects biological treatment processes
- Lagoon equations can be used to estimate water temperature

\[
T_w = \frac{(0.5A)(T_a) + (Q)(T_i)}{0.5A + Q}
\]

Where:

- \(T_w\) = water temperature, \(^\circ\)C
- \(T_a\) = ambient air temperature, \(^\circ\)C
- \(A\) = surface area of wetland, \(m^2\)
- \(Q\) = wastewater flow rate, \(m^3/d\)

USEPA, 1983
Flow governed by Darcy’s Law:

\[Q = k_s A_c S \]

Where:

- \(Q \) = average flow through wetland, \(m^3/d \)
- \(k_s \) = hydraulic conductivity, \(m/d \)
- \(A_c \) = cross-sectional area of bed, \(m^2 \)
- \(S \) = slope of hydraulic gradeline, \(m/m \)
VSB Wetland Processes

- Wastewater loading and biomat growth dramatically reduces the hydraulic conductivity
- Recommended design values:
 - Initial 30% of VSB: design K value = 1% of clean bed K
 - Final 70% of VSB: design K value = 10% of clean bed K

USEPA, 2000
Role of Plants in VSB Wetlands

- Oxygen transfer from plants is minimal (about 0.02 g/m²d)
- Plant roots generally do not penetrate to bottom of gravel bed
- Plant roots support symbiotic bacteria and fungi, resulting in a more diverse microbial environment
- Net effect of plants on treatment is minimal
Oxygen transfer through atmospheric diffusion and plant-mediated transport is minimal.

BOD removal is mainly through physical-chemical processes.

Insufficient oxygen transfer for nitrification.

Alternative VSB designs (aeration, tidal flow) address some of these limitations.
Suspended Solids Removal

- VSB’s are extremely effective in trapping and removing TSS
- Accumulation of sediments affects hydraulic conductivity of bed media:
Organic Matter Degradation

- BOD removal is mainly by physical-chemical processes
- Mulch materials can provide a secondary organic loading, affecting treatment

Wallace et al., 2001
Nitrogen Cycling in VSB Wetlands

- Insufficient oxygen transfer for nitrification
- Reducing conditions suitable for denitrification
- Significant nitrogen reduction only occurs when the influent nitrogen has already been converted to nitrate
- Plant Harvesting
 - Removes less than 10% of applied nitrogen
 - Not a cost-effective nutrient management option

Vymazal et al, 1998; Platzer, 1996; Kuusemets et al 2002
Phosphorus Removal in VSB Wetlands

- Adsorption onto media is only a short-term removal mechanism with standard medias
- Expanded shale and clay aggregates with very high phosphorus sorption capacities have been used to increase phosphorus retention in VSBs
 - Sacrificial bed media
- Plant Harvesting
 - Removes less than 5% of applied phosphorus
 - Not cost-effective

Jenssen, 1996; Zhu et al, 1997; Kuusemets et al 2002
Sulfur Cycling in VSB’s

- VSB’s will reduce sulfate to sulfide
 - Sulfide can be an odor source (H$_2$S)
 - Influent sulfides represent an additional oxygen demand
- Some VSB’s designed to remove heavy metals through sulfide precipitation

Eger, 1992; Frostman, 1993; Eger & Lapakko, 1989
Pathogen Reduction in VSBs

- Typical removal rates:
 - 98-99% fecal coliform bacteria
 - 93-99% helminth ova
 - 95-99% viruses

- Disinfection may be required to meet surface water discharge standards

Gerba et al, 1999; Gersberg et al, 1989; Mandi et al, 1998; Stott et al 2002
Cold-Climate VSB’s

- VSB systems can be insulated with a mulch layer to provide freeze resistance in cold climates.
- The insulation requirement can be calculated using energy balance methods.

Lutsen Sea Villas
Wetland Treatment Cell
Temperature Data

NOTE: Air temperature data taken by the National Weather Service in Duluth, Minnesota.

Wallace et al, 2001
Commonly Used Wetland Design Methods

- Small and Decentralized Wastewater Management Systems, Crites & Tchobanoglous, 1998
- Constructed Wetlands Treatment of Municipal Wastewaters, USEPA, 2000
- Treatment Wetlands, Kadlec & Knight, 1996
- Natural Systems for Waste Management and Treatment, 2nd ed., Reed et al 1995
- TVA Wetland Design Manual, Steiner & Watsom, 1993
Determine residence time for BOD Removal

\[t = \frac{V}{Q} = \left[\frac{1}{(C_n/C_0)^{1/n} - 1} \right] \times \frac{n}{k_0} \]

Where:
- \(t \) = detention time for BOD removal, d
- \(V \) = total volume of wetland, ft\(^3\)
- \(Q \) = flow rate, ft\(^3\)/d
- \(C_n \) = effluent BOD concentration from the nth reactor in series, mg/L
- \(C_0 \) = influent BOD concentration, mg/L
- \(n \) = number of complete mix reactors in series (4 is recommended)
- \(k_0 \) = overall BOD removal rate constant, corrected for temperature, d\(^{-1}\) (1.01 d\(^{-1}\) is recommended at 20°C)
FWS Design – BOD removal

Temperature Correct Removal Rates

\[
\frac{k_2}{k_1} = \theta^{(T_2-T_1)}
\]

Where:

- \(k_2 \) = BOD rate constant at \(T_2, \degree C \)
- \(k_1 \) = BOD rate constant at \(T_1, \degree C \)
- \(\theta \) = temperature correction factor (1.02-1.06 recommended)
Organic Loading Rate Should be less than 100 lb BOD/ac·d

\[L_{org} = \frac{C_o \times d_w \times \eta \times F_1}{t \times F_2} \]

Where:
- \(L_{org} \) = organic loading rate, lb BOD/ac×d
- \(C_o \) = BOD concentration in influent wastewater, mg/L
- \(d_w \) = water depth, typically 1.25 ft
- \(\eta \) = plant based void ratio, typically 0.65 to 0.75
- \(F_1 \) = conversion factor, \(8.34 \text{lb}[\text{Mgal}\times(\text{mg/L})] \)
- \(t \) = detention time, days
- \(F_2 \) = conversion factor, \(3.07 \text{ac}×\text{ft}/\text{Mgal} \)
FWS Design – BOD Removal

Calculate Required Area

\[A = \frac{Q_{\text{ave}} \times t \times 3.07}{d_w \times \eta} \]

Where:

\(Q_{\text{ave}} = \) average daily flow through FWS wetland, Mgal/d

\(A = \) area, ac
USEPA, 2000

FWS Wetland Design

- Zone 1: Fully Vegetated, D.O. (-), $H \leq 0.75 \text{ m}$
- Zone 2: Open-Water Surface, D.O. (+), $H \geq 1.2 \text{ m}$
- Zone 3: Fully Vegetated, D.O. (-), $H \leq 0.75 \text{ m}$

Diagram showing the layout of a wetland with different zones and plant growth.
FWS Wetland Design

Mass Loading Rates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Area Loading</th>
<th>Effluent Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>45 kg/ha·d</td>
<td><20 mg/L</td>
</tr>
<tr>
<td></td>
<td>60 kg/ha·d</td>
<td>30 mg/L</td>
</tr>
<tr>
<td>TSS</td>
<td>30 kg/ha·d</td>
<td><20 mg/L</td>
</tr>
<tr>
<td></td>
<td>50 kg/ha·d</td>
<td>30 mg/L</td>
</tr>
</tbody>
</table>
USEPA, 2000

- Zone 1 (vegetated) 2-3 day residence time
- Zone 2 (open water) 2-3 day residence time (break into multiple open water zones if necessary)
- Zone 3 (vegetated) 2-3 day residence time
Kadlec & Knight, 1996

FWS Wetland Design

\[
\ln \left(\frac{C_e - C^*}{C_i - C^*} \right) = -\frac{k_{A,T}}{q} \quad \text{k-C* Model}
\]

Where:

- \(C_e \) = outlet target concentration, mg/L
- \(C_i \) = inlet concentration, mg/L
- \(C^* \) = background concentration, mg/L
- \(k_{A,T} \) = temperature dependent first-order areal rate constant, m/yr
- \(q \) = hydraulic loading rate, m/yr
FWS Wetland Design

$k-C^*$ Model rearranged to determine area

\[A = \left(\frac{0.0365 \times Q}{k_A} \right) \times \ln \left(\frac{C_i - C^*}{C_e - C^*} \right) \]

Where:

- \(A \) = required wetland area, ha
- \(Q \) = water flow rate, \(m^3/d \)
FWS Wetland Design

Temperature correct removal rates

\[k_{A,T} = k_{A,20} \theta^{(T-20)} \]

Where:

- \(k_{A,T} \) = first-order areal rate constant at temperature \(t \), °C
- \(k_{a,20} \) = first-order areal rate constant at 20 °C
- \(\theta \) = temperature correction factor
- \(T \) = wetland water temperature, °C
Kadlec & Knight, 1996

FWS Wetland Design

k-C* Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$k_{A,20}$ (m/yr)</th>
<th>θ</th>
<th>C^*, mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>34</td>
<td>1.00</td>
<td>3.5 + 0.053Ci</td>
</tr>
<tr>
<td>TSS</td>
<td>1000</td>
<td>1.00</td>
<td>5.1 + 0.16Ci</td>
</tr>
<tr>
<td>Organic-N (sequential)</td>
<td>17</td>
<td>1.05</td>
<td>1.5</td>
</tr>
<tr>
<td>NH$_4$-N (sequential)</td>
<td>18</td>
<td>1.04</td>
<td>0.00</td>
</tr>
<tr>
<td>NO$_x$-N (sequential)</td>
<td>35</td>
<td>1.09</td>
<td>0.0</td>
</tr>
<tr>
<td>Total-N (overall)</td>
<td>22</td>
<td>1.05</td>
<td>1.50</td>
</tr>
<tr>
<td>Total P</td>
<td>12</td>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>75</td>
<td>1.00</td>
<td>300 cfu/100 mL</td>
</tr>
</tbody>
</table>
Reed et al, 1995

FWS Wetland Design – BOD Removal

\[\frac{C_e}{C_o} = e^{-K_T \times t} \]

Loading should be less than 100 kg/ha-d

Where:

- \(C_e \) = effluent BOD, mg/L resulting from influent BOD
- \(C_o \) = influent BOD, mg/L
- \(K_T \) = temperature dependent, first order rate constant, d\(^{-1}\)
- \(t \) = detention time, days
FWS Wetland Design – BOD Removal

Rearranging to solve for area

\[A_s = \frac{Q_{\text{ave}} \left(\ln C_o - \ln C_e \right)}{K_T \times d_w \times \eta} \]

Where:

\(A_s \) = wetland surface area, \(m^2 \)

\(Q_{\text{ave}} \) = average flow rate, \(m^3/d \)

\(d_w \) = water depth, typically 0.1-0.46 \(m \)

\(\eta \) = wetland porosity, typically 0.65-0.75
Reed et al, 1995

FWS Wetland Design – BOD Removal

Temperature correct removal rates

\[K_T = K_{20} \left(1.06\right)^{\left(T-20\right)} \]

\[K_{20} = 0.678 \text{ d}^{-1} \]
Reed et al., 1995

- FWS Wetland Design – TSS removal

\[C_e = C_o \left[0.1139 + 0.00213(HLR) \right] \]

Where:

- \(C_e \) = effluent TSS, mg/L
- \(C_o \) = influent TSS, mg/L
- \(HLR \) = hydraulic loading rate, cm/d
Reed et al, 1995

FWS Wetland Design - Nitrification

\[\frac{C_e}{C_o} = e^{-K_T \times t} \]

\[A_s = \frac{Q_{ave} \ln \left(\frac{C_o}{C_e} \right)}{K_T \times d_w \times \eta} \]

Where:

- \(A_s \): surface area of wetland, m\(^2\)
- \(C_e \): effluent ammonia concentration, mg/L
- \(C_o \): influent TKN concentration, mg/L
- \(K_T \): temperature dependent rate constant, d\(^{-1}\)
- \(K_T \) = \[\begin{cases} 0 \text{ d}^{-1} & \text{at } 0^\circ C \\ 0.2187(1.048)^{(T-20)} & \text{at } 1^\circ C \end{cases} \]
- \(\eta \): wetland porosity; typically 0.65-0.75
- \(t \): hydraulic residence time, d
- \(d_w \): water depth in wetland, m

\[Q_{ave} = \text{average flow through wetland, m}^3/\text{d} = \frac{Q_{in} - Q_{out}}{2} \]
Reed et al, 1995

FWS Wetland Design - Denitrification

\[
\frac{C_e}{C_o} = e^{-K_T \times t}
\]

\[
A_s = \frac{Q_{ave} \ln \left(\frac{C_o}{C_e} \right)}{K_T \times d_w \times \eta}
\]

Where:

- \(A_s\) = surface area of wetland, m\(^2\)
- \(C_e\) = effluent nitrate concentration, mg/L
- \(C_o\) = influent nitrate concentration, mg/L (influent + ammonia oxidized in wetland)
- \(K_T\) = temperature dependent rate constant, d\(^{-1}\)
- \(K_T = \begin{cases} 0 & \text{d}^{-1} \text{at } 0^\circ \text{C} \\ 1.000 (1.15)^{(T-20)} & \text{at } 1^\circ \text{C} \end{cases}\)
- \(\eta\) = wetland porosity; typically 0.65-0.75
- \(t\) = hydraulic residence time, d
- \(d_w\) = water depth in wetland, m

\(Q_{ave} = \text{average flow through wetland, m}^3/d = \frac{Q_{in}-Q_{out}}{2}\)
VSB Wetland Design – BOD Removal

Determine residence time

\[t = - \frac{\ln C/C_o}{k_{\text{apparent}}} \]

Where:
- \(t \) = detention time for BOD removal, d
- \(C_o \) = influent BOD concentration, mg/L
- \(C \) = effluent BOD remaining from influent (BOD\(_{RIW}\)), mg/L
- \(k_{\text{apparent}} \) = overall BOD removal rate constant, corrected for temperature, d\(^{-1}\) (1.1 d\(^{-1}\) recommended)
Calculate required area

\[A_s = \frac{Q_{ave} \times t \times 3.07}{\eta \times d_w} \]

Where,

- \(A_s \) = surface area of VSB, ac
- \(Q_{ave} \) = average flow through wetland, Mgal/d
- \(t \) = detention time, d
- \(\eta \) = porosity of gravel bed media
- \(d_w \) = water depth, ft
Crites & Tchobanoglous, 1998

VSB Wetland Design - Nitrification

\[
A = \frac{Q_{\text{ave}} \left(\ln N_o - \ln N_e \right)}{k \times d_w \times \eta \times F}
\]

Where:

- \(A \) = surface area of VSB for ammonia removal, ac
- \(Q_{\text{ave}} \) = average flow through wetland, ft\(^3\)/d
- \(N_o \) = influent ammonia concentration, mg/L
- \(N_e \) = effluent ammonia concentration, mg/L
- \(k \) = ammonia removal rate constant, 0.107d\(^{-1}\) at 20°C
- \(d_w \) = depth of water in bed, ft
- \(\eta \) = effective porosity of bed media
- \(F \) = conversion factor, 43,560 ft\(^2\)/ac
Mass Loading Rates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Area Loading Rate</th>
<th>Effluent Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>6 g/m²·d</td>
<td>30 mg/L</td>
</tr>
<tr>
<td>TSS</td>
<td>20 g/m²·d</td>
<td>30 mg/L</td>
</tr>
</tbody>
</table>
USEPA, 2000

- **VSB Wetland Design**

 Calculate Width Using Darcy’s Law

 Initial 30% of VSB \(K_i = 1\% \) of clean \(K \)

 Final 70% of VSB \(K_f = 10\% \) of clean \(K \)
VSB Wetland Design

\[
\ln \left(\frac{C_e - C^*}{C_i - C^*} \right) = - \frac{k_{A,T}}{q} \quad \text{k-C* Model}
\]

Where:
- \(C_e \) = outlet target concentration, mg/L
- \(C_i \) = inlet concentration, mg/L
- \(C^* \) = background concentration, mg/L
- \(k_{A,T} \) = temperature dependent first-order areal rate constant, m/yr
- \(q \) = hydraulic loading rate, m/yr
Kadlec & Knight, 1996

VSB Wetland Design

k-C* Model rearranged to determine area

\[
A = \left(\frac{0.0365 \times Q}{k_A} \right) \times \ln \left(\frac{C_i - C^*}{C_e - C^*} \right)
\]

Where:

A = required wetland area, ha

Q = water flow rate, m³/d
Kadlec & Knight, 1996

VSB Wetland Design

Temperature correct removal rates

\[k_{A,T} = k_{A,20} \theta^{(T-20)} \]

Where:

- \(k_{A,T} = \text{first-order areal rate constant at temperature } T, \, ^\circ C \)
- \(k_{a,20} = \text{first-order areal rate constant at } 20^\circ C \)
- \(\theta = \text{temperature correction factor} \)
- \(T = \text{wetland water temperature, } ^\circ C \)
VSB Wetland Design

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$k_{A,20}$ (m/yr)</th>
<th>θ</th>
<th>C^*, mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>117</td>
<td>1.057</td>
<td>3.0</td>
</tr>
<tr>
<td>TSS</td>
<td>43.4</td>
<td>1.00</td>
<td>6.0</td>
</tr>
<tr>
<td>Organic-N (sequential)1</td>
<td>35</td>
<td>1.05</td>
<td>1.5</td>
</tr>
<tr>
<td>NH$_4$-N (sequential)1</td>
<td>34</td>
<td>1.05</td>
<td>0.00</td>
</tr>
<tr>
<td>NO$_x$-N (sequential)1</td>
<td>50</td>
<td>1.05</td>
<td>0</td>
</tr>
<tr>
<td>Total-N (overall)2</td>
<td>10</td>
<td>1.05</td>
<td>1.5</td>
</tr>
<tr>
<td>Total P</td>
<td>9.1</td>
<td>1.097</td>
<td>0.0</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>100</td>
<td>1.003</td>
<td>200 cfu/100mL</td>
</tr>
</tbody>
</table>
Reed et al, 1995

VSB Wetland Design – BOD Removal

\[
\frac{C_e}{C_o} = e^{-K_T t}
\]

Calculate required retention time

Where:

\(C_e \) = effluent BOD, mg/L resulting from influent BOD
\(C_o \) = influent BOD, mg/L
\(K_T \) = temperature dependent, first order rate constant, \(\text{d}^{-1} \)
\(t \) = detention time, days
Reed et al, 1995

VSB Wetland Design – BOD Removal

\[A_s = \frac{Q_{ave} \left(\ln C_o - \ln C_e \right)}{K_T \times d_w \times \eta} \]

Rearranged to determine area

Where:

- \(A_s \) = wetland surface area
- \(Q_{ave} \) = average flow rate, \(m^3/d \)
- \(d_w \) = water depth, typically 0.6 m
- \(\eta \) = wetland porosity, dependent on media selected, 0.28-0.45
Reed et al, 1995

- VSB Wetland Design – BOD Removal

Temperature correct removal rates

\[K_T = K_{20} \left(1.06\right)^{(T-20)} \]

\[K_{20} = 1.104 \text{ d}^{-1} \]
Reed et al, 1995

- VSB Wetland Design – TSS Removal

\[C_e = C_o \left[0.1058 + 0.0011(HLR) \right] \]

Where:

- \(C_e \) = effluent TSS, mg/L
- \(C_o \) = influent TSS, mg/L
- HLR = hydraulic loading rate, cm/d
Reed et al, 1995

VSB Wetland Design - Nitrification

Nitrification rate constant

\[K_{NH} = 0.01854 + 0.3922(rz)^{2.6077} \]

Where:

\(K_{NH} \) = nitrification rate constant at 20°c, d\(^{-1}\)

\(rz \) = fraction of VSB bed depth occupied by root zone, (0 to 1)
Reed et al, 1995

VSB Wetland Design - Nitrification

\[
\frac{C_e}{C_o} = e^{-K_T t}
\]

\[
A_s = \frac{Q_{ave} \ln \left(\frac{C_o}{C_e} \right)}{K_T \times d_w \times \eta}
\]

Where:

- \(A_s \) = surface area of wetland, m²
- \(C_e \) = effluent nitrate concentration, mg/L
- \(C_o \) = influent nitrate concentration, mg/L (influent nitrate + ammonia oxidized in wetland)
- \(K_T \) = temperature dependent rate constant, d⁻¹

 \[
 K_T = \begin{cases}
 0 \text{ d}^{-1} & \text{at } 0°C \\
 K_{NH} (0.4103) & \text{at } 1°C \\
 K_{NH} (1.048)^{(T-20)} & \text{at } 1+°C
 \end{cases}
 \]
- \(\eta \) = wetland porosity; dependent on bed media
- \(t \) = hydraulic residence time, d
- \(d_w \) = water depth in wetland, m
- \(Q_{ave} \) = average flow through wetland, m³/d = \(\frac{Q_{in} - Q_{out}}{2} \)
Steiner & Watson, 1993

- VSB Wetland Design

Hydraulic Loading Rate

1.3 ft²/gpd (unrestricted area or cold climates)

0.87 ft²/gpd (restricted small area)
VSB Wetland Design

Width determined by organic loading rate

Organic Loading Criteria = 1.0ft²/0.05 lb BOD
The plant species must be matched to the hydrology of the wetland.

The plant material (seed, tuber, rhizome, pot, etc.) must be viable at the time of planting.

Water level management during the startup phase must be compatible with the needs of the newly-establishing plants.
Wetland Vegetation

- Plant species are grouped by hydrology:

<table>
<thead>
<tr>
<th>Indicator Category</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obligate Wetland</td>
<td>OBL</td>
<td>Plants that occur almost always (>99%) in wetlands under natural conditions</td>
</tr>
<tr>
<td>Facultative Wetland</td>
<td>FACW</td>
<td>Plants that occur usually (67-99%) in wetlands but can also occur (1-33%) in upland areas</td>
</tr>
<tr>
<td>Facultative</td>
<td>FAC</td>
<td>Plants with a similar likelihood (33-67%) of occurring either in wetlands and nonwetlands (uplands)</td>
</tr>
<tr>
<td>Facultative Upland</td>
<td>FACU</td>
<td>Plants that occur sometimes (1-33%) in wetlands but occur more often (67-99%) in uplands</td>
</tr>
<tr>
<td>Obligate Upland</td>
<td>UPL</td>
<td>Plants that occur almost always (>99%) in uplands</td>
</tr>
</tbody>
</table>
Wetland Vegetation

- The hydrologic tolerances of the plant species must be matched to the wetland design:
Plants need access to sunlight and air to survive. The water level must be gradually raised during the plant establishment phase.
Commonly Used Wetland Plant Species

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Status</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carex nebrascensis</td>
<td>Nebraska sedge</td>
<td>OBL</td>
<td>Southwest</td>
</tr>
<tr>
<td>Carex stricta</td>
<td>Uptight sedge</td>
<td>OBL</td>
<td>Southwest</td>
</tr>
<tr>
<td>Iris missouriensis</td>
<td>Rock Mountain Iris</td>
<td>FACW, OBL</td>
<td>West</td>
</tr>
<tr>
<td>Iris pseudocorus</td>
<td>Yellow Iris</td>
<td>OBL</td>
<td>Midwest, Northeast</td>
</tr>
<tr>
<td>Iris versicolor</td>
<td>Blueflag Iris</td>
<td>OBL</td>
<td>Midwest, Northeast</td>
</tr>
<tr>
<td>Juncus balticus</td>
<td>Baltic Rush</td>
<td>FACW, OBL</td>
<td>Southwest</td>
</tr>
</tbody>
</table>
Commonly Used Wetland Plant Species (continued)

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Status</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scirpus acutus</td>
<td>Hardstem Bulrush</td>
<td>OBL</td>
<td>across US</td>
</tr>
<tr>
<td>Scirpus atrovirens</td>
<td>Green Bulrush</td>
<td>OBL</td>
<td>Midwest, East</td>
</tr>
<tr>
<td>Scirpus californicus</td>
<td>Bulrush (Restorer)</td>
<td>OBL</td>
<td>West</td>
</tr>
<tr>
<td>Scirpus fluviatilis</td>
<td>River Bulrush</td>
<td>OBL</td>
<td>Midwest, East</td>
</tr>
<tr>
<td>Scirpus validus</td>
<td>Softstem Bulrush</td>
<td>OBL</td>
<td>across US</td>
</tr>
<tr>
<td>Typha latifolia</td>
<td>Cattail, Broadleaf</td>
<td>OBL</td>
<td>across US</td>
</tr>
<tr>
<td>Typha angustifolia</td>
<td>Cattail, Narrowleaf</td>
<td>OBL</td>
<td>northern US</td>
</tr>
</tbody>
</table>
VSB System with Ornamental Plants

Photo courtesy North American Wetland Engineering
Wetland Design – Current Level of Understanding

- Technology still evolving
- Wetlands can be designed to meet overall treatment objectives, but mechanisms within the “black box” are not yet quantified
- Current state of the art is “semi-empirical”
 - Area requirements are determined based on commonly used design equations
 - Internal configuration of the wetland often based on the intuitive judgement of the designer